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1. Introduction

The concept of a regenerative stochastic process has become an
important tool in applied probabdility. PFrom its theoretical origins
in work of DOEBLIN (1938) and SMITH (1955), it has grown to play a
central role in the analysis of, for example, queueing systems in
light traffic and simulation output analysis; see IGLEHART (1971) and
CRANE and LEMOINE (1978).

In the Markov chain setting, regenerative analysis has simplified
many complicated analytical arguments associated with the limit theory
of such processes. A significant step in this direction occurred with
the recent papers by ATHREYA and NEY (1978) and NUMMELIN (1978), who
showed that regenerative process theory is applicable to a ‘
significantly larger class of Markov chains than previously known.

In this report, we shall‘investig;te various propéfties of
discrete-~time regenerative processes {X;}. We start, in Section 2,
by defining the concept of a regenerative stochastic process. In
contrast to many other treatments (e.g., GINLAR (1975)), we make no
requirement that regeneration times be stopping times with respect to
the process fields, or, in fact, that they even be measurable with
respect to the process. We also generalize the concept of a
regenerative process to allow m—-dependence between regenerative

blocks; we call this class of processes weakly regenerative. This
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clags turns out to be useful in treating general state space Markov

chains; see [19] and {20].

“In Section 3, ergodic theory for weakly regenerative processes is
1nvest1qated. We prove strong laws for partial sum processes, and
show that there exists an 'ergodié‘ neasure\;r , which captures all the
“steady-state” information of the process {iﬁ}. We also obtain
a.s., weak convergence for the empirical measure of a weakly regenera-
tive process, and show that the “"renewal paradox” continues to hold in
this generalized setting.

Section 4 {1s concerned with construction of a stationary process
from the ergodic measure of Section 3. Total variation convergence of

the measures

ngl p
P{X ¢ *}/n
k=0 xk

to w® 1s studied, in the regenerative setting, in Section 5.

Furthermore, rates of convergence, in terms of the moments of the

inter-regeneration times, are obtained. These ideas are applied in
Section 6 where it is shown that all regenerative processes are strong
mixing, and that regenerative processes are uniformly strong mixing
(¢—mixing) under a ;imple sufficient condition. These results allow
elementary proofs of some classical mixing results of DAVYDOV (1973)
for Markov chains, and improve the results in the sense that estimates

for the mixing constants can be obtained. Section 7 studies the
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central limit theorem (CLT) f:r weakly regenerative processes; this

result can be used to obtain a new CLT for Markov chains; see [20].
We also.relate this CLT to a CLT for the corresponding stationary
process, constructed in Sectiomn 4.

Finally, in Section 8, we investigate the splitting property of
regeneration times (see Jacobsen (1974) for the definition of a split-
ting time) for a special class of Markov chains. A regenerative
process is said to be strongly regenerative if fhe regeneration times
are meagsurable with respect to the o¢—field generated by the process.
For the class of Markov chains considered, we are able to show that
all strong regeneration times are splitting times. This result allows
us to completely describe the strongly regenerative Markov chains ia
the class, and shows that when such a Markov chain is strongly regen-
erative, then the regeneration times can be chosen to be.stopping

times with respect to the process fields.

2. Definitions and Preliminaries

Let {Xjp: n > 0} be a stochastic process defined on a
probability space (Q, G, P), and taking values in a measurable space

(E, E). A G-measurable random variable (r.v.) T: Q + zt = {0,1,...)

is called a random time. For any two random times TI’TZ such that
T
Tl.ﬁ Tz, we define 1&2 to be the o-field generated by all events of
1

the form A n ('1'2-'1'1 = k}, where




T, +k
Ac ¥

Rl
Ep  FERp s Xpape oo Tpwd

tidhiiias

(2.1) LCEFINITION. A process {Xu: n > 0} 1is said to be
regenerative if there exist random times 0= '1‘0 < ‘1'1 < '1'2 € eees guch

that:

T n+1-1
_!:'_,1. are independent, for n > 0,

n

i) the o-fields

gﬂ -
i1) the o—fields -B-n are identically distributed for n > 1, in

the sense that . ]

P{(X.rn, cons xrn+k-1) € B v, =k}

- P((XTL’ cses .x’fl"l-k-l) € B; 7, =k}

for each B in the product o—-field Ek = E X oee xE

(k times), where T, " 'rn+1-'rn.

The random times T;, T3, ... are called regeneration times

for the process {X,: n > 0}. One desirable property of this
definition, in analogy with the case of independent and identically
distributed (1.i.d.) r.v.'s, is that the process {Z;: -=» < n £ 0}
inherits the regenerative property (with the obvious generalization of

(2.1) to time parameter set {k: -=» < k £ 0}), where 2, = X.,.




(2.2) PROPOSITION. The regensrative property is preserved under time
reversal.

Proof. For the process (Z,}, we consider the randoa times 83

given by -Ty+l, and put Sg = 1. It is easily checked that the

S, -1 -1
generating sets of !&3 1 are precisely those of g&j « This
| -1 ,
sj-l
immediately yields the conclusion that _gs are independent for
i+l

J > 0, and identically distributed for § > 1. 1 !

We remark that one of the classical definitions of a regenerative j
process requires that the random times T be stopping times with . ;
respect to the family of .ncreasing o-fields {gg: n > 0); see, for
example, GINLAR (1975), p. 298. Such a definition, in contrast to
ours, does not have the time reversal property. Furthermore, it is
clearly a limitation to require that the T& be !8 wmeasurable.

(2.3) EXAMPLE. Let {Z,: n > 0} be a finite state, irreducible

Markov chain on (0, 1, ..., m}. Then, X = 1{0)(zn) (IA(x) = 1(0) :
if x ¢ A(x ¢ A)) 1s a regenerative process under (2.1), and yet, ig ;
general, there exist no F

_5 measurable regeneration times for xn. E

As we shall see in Section 5, Fr measurability of the T,'s has
=0 ]

some important coansequences, motivating the following definition.




(2.4) DEFINITION. The process {X;: n > 0} 4is said to be strongly
regenerative if {X,} is regenerative and the regeneration times

o
‘1'k are go measurable.

Applications to general astate space Markov chains in {19] require

that we weaken the regenerative property somewhat.

(2.5) OJEFINITION. The process {X;} 1is said to be weakly

regenerative of order m if there exist random times ‘I'j such

that:
T n+1-1
1) the o~fields gn - _!';.r are w-dependent for some mn,
n
{i.e., the g-fields _gn and -gn + are independent fpr

32w,

: 11) for n <1 and :’0('"(11

P{(xrn, es sy x’rnﬂ) € B; Tn = Jo. coey Tt&l - jx}
- P{(x-rl' L X le‘"k) ¢ B; Tl - jo, ceny 1“"’”‘1 - j&}

for each B in the product o-field Ek, vhere

*a " Tn+1-Tn'

(2.6) PROPOSITION. A regenerative process {X,} is weakly

regenerative of order 0.




e
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Proof. We need only check (2.5) (11). Let A< E) and B ¢ EX, and

consider

PO+ vons T g € A% 35 50 = s g = ¥}

- P{(xrn' vees xrd+j_1) € At = 3}

. p{(xrn+l, cees xTn+1+k-l) eB; v, =k}

- p{(le, cees xi1+ﬂ‘1) €A - i}

. P{(XTZ, ovey xr2+k_1) €B; t, = k}

= P{(XTI, seey le+kﬂ-1) < A x B; 11 = j' 12 = k} R

the first and third equalities by (2.1)(1i), the second by (2.1)(i1).
An eagy induction argument extends the above equation to the class of

rectangles generating (2.5){ii), proving the result. |

We now examine some elementary properties of weakly regenerative

processes.

(2.7) PROPOSITION. Let £ be a sequence of real-valued functions
such that fk is !r measurable. Then, !;- f'n(xth' csey x’d*‘n‘l)

is _nn measurable. Hence, the r.v.'s {(!n, 1n): 2> 1} are

identically distributed, and m—dependezi,




Proof. We write Y, as

(2.8) Y = § £ (X , eeey X0 ) I
o Ly kT T k' {t =k+1)

(note that (2.8) is a finite sum for each w ¢ Q), and observe that

each summand in (2.8) is H, measurable, so that Y, is H,

measurable. |
Certain renewal arguments will demand the following result.
(2.9) PROPOSITION. Suppose that {X;} 1is regenerative and tbat

g € bE®, wvhere bE™ 1is the class of real-valued bounded E®.

measurable random variables. Then,

1) x{g(v,l,m);' T, = Ty = ey ) BT < k)

where 1 { k < n, and Vj - (xj, 4417 ees) o

11) B(8(Y, )3 Ty(pyy) = WY |-¥':}

where (n) = max{(k: T, <0}, and 0< j < n.

Proof. For (1), write

B(8(Vy )i Ty = Ty

- E{S(v'rz-m—k)‘ T, =k




>

and observe that S(VT2+n—k) is measurable with respect to V;Lz By,
the minimal o-field generated by gj, J > 2. The independence of !1
from this o¢-field, together with (2.5)(ii), yields (i). For (i1),

take W ¢ ka and decompose on (k) as follows:

20

B8 (Vi) Tygeyer = ¥4I

k k
- jgo LZJ E{Wg(V,, ); Tj o A k+i-2}

k k
R R L T A T

J=0 2=J
b
Here, “I(T .g;t,=k+~1) is v -§1 measurable, whereas
b b i=0
g(VT +(n-j)) is v measurable, and the resulting independence
141 1=§+1

proves (1) (use the defining relation for conditional expectation). |

3. Ergodic Theory for Weakly Regenerative Processes

A weakly regenerative process is said to be positive recurrent if

Etry) < » and null recurrent otherwise. In the remainder of this

section, we assume that {X,} 1is a positive recurrent weakly regen-
eration process.

Before proceeding, we need gsome notation. Let bE be the class
of bounded real-valued E measurable functions, and let E? be the

cone of non-negative E measurable functions. For E measurable

real-valued £, put




Tn+l-1

Y (f) = I sx) .
ORI
n
The following theorem extends Theorem 7 of SMITH (1955) for

cumulative processes.

(3.1) THEOBEM. Suppose either that £ ¢ Et or K!l(lfl) < -,
Then,

(3.2) : £(X. )/u + EY_(£)/E<x 8.8.
kzoﬁ 1 1

Proof. First, observe that by Proposition 2.7, {(Yn(f); 1n); n > 1}
is an identically distributed m—dependent sequence. For f ¢ gf. the

strong law of large numbers implies that

L
(3.3) I ¥

o (m+1)k+j(f)/l > ZYI(f) a.8.

as f + o, for j =1, ..., wrl., Averaging (3.3) over j, and apply-

ing the result to both Y;(f) and Y;(1), shows that

) ]
(3.4) 1 Y (£)/T, + EY (£)/Ex) a.s.
k=0

10




The non-negativity of £ ¢ E? implies that

. l(n) n 1(n)+1
(3.5) kzo LTy Skzo £(X )/ £ kgo L/ Ty +

Using (3.4) on the end terms of (3.5) yields (3.2) for f ¢ Ef. For
f satisfying EY1(|f|) < =, split £ into f¥(x) = max{f(x),0)}

and f7(x) = max{-£f(x),0}. Since (3.2) holds for f* and £f~, we

obtain

n
+ -
(3.6) L £@/m > (my () - B () /ey

If EY1(|f|) o, we can combine the expectations on the right side

of (3.6) as EY;(f)/Et;. 1

The following example shows that convergence may not occur under

ElYl(f)' { =,

(3.7) EXAMPLE. Let ({Zy: k > 0} be a sequence of non-negative

independent and identically distributed (i.1.d.) r.v.'s with

-Z Then, T, = 2k and

EZy = = Put X, =2, and X .

0 2k
Yk(g) = 0 for g(x) = x. But

2k+l T T4k’




2
j{o Y,(8)/2k = /2 » = # EY (8)/Ev, .

The convergence of Zk/k to infinity is implied by Z;-O P{Zk > k)

= o, and the Borel-Cantelli converse.

Let n be the set function on E defined by the formula

1,71
(3.8) WA = E{ T 1,(x)}/Ec, .
kZTl AXQ /BTy

It is easy to show that x 18 countably additive and thus a
probability measure. We shall use the notation #«f to denote
f £(y) n(dy). The following "representation" theorem for the

“ergodic” measure = is valid.
(3.9) PROPOSITION. If =xf is well-defined, then

(3.10) xf = E!l(f)/lrl .

Proof. By definition of =x, (3.10) clearly holds for all simple
functions f. For f ¢ bE, f can be uniformly approximated by simple

functions £, such that

lfn-fl = gup{ £,(x) = £(x)|: x ¢ E} < 1/n ,

so that




| %€ - e, (£)/E7, |
= |me-£) + (xg, - EY\(E)/ET)) + BY, (£=£,)/E7 |
+ 218 01 < 2/a ,

and hence (3.10) holds for f ¢ bE. For f ¢ E*, we approximate f

by bounded functions £, increasing to £, and use monotone conver—-
gence. For a general £, write f = ft-f~  and observe that (3.10) is

valid for f* and £~. 1

Consider the sequence of empirical probability measures defined

by

: n
M (Aw) = kzo I, (X (w))/(atl) .

Our next theorem concerns the a.s. weak convergence of Mup(+,w).

(3.11) THEOREM. Suppose that E 1is the Borel o-field of a separ-

able metric space E. Then,

Hn(' w) => x(e) 8.8,

where ==)> denotes weak convergence of probability measures.




Before proceeding with the proof, we need to discuss the notion
of weak convergence. It is known (see BILLINGSLEY (1968), p. 12) that
Pp => P 1s equivalent to requiring tht P,(A) + P(A) for each
A such.that P(3A) = O, where 3A 1is the boundary of A. For
separable metric spaces, a smaller class of sets A characterizes
weak convergence. Let {s,} be a set of points dense in E, and
put B(sp,e) = {y: p(sp,y) < €}, where p 1is the metric on E.
Then, observe that 3B(s,,e) = {y: p(sy,y) = €}, and hence, for
fixed n, the boundaries are disjoint in e. Thus, for each n, one
can find a sequence of numbers €on ¥ 0 such that P(aB(sn,emn)) =0
for all m. Let A(P) be the class of all finite intersections of

sets B(sp, €gn).

(3.12) LEMMA. If P, P are probability measures on a separable
metric space E, then P, ==> P 1is equivalent to P,(G) + P(G)
for all G ¢ A(P).

Proof. First, since a(cl n Gz) = (acl) u (acz), it follows that
P(3G) = 0 for all G ¢ A(P) and thus P => P implies that
Pn(G) + P(G) for all G ¢ A(P). Conversely, observe that for each
xe¢ E and ¢ > 0, there exists =m,n such that B(sn.emn) = B(x,€)

and thus Corollary 1, page 14, of [3] applies, completing the proof. |

Note that A(P) = u:_l AI(P)' where Ai(P) is the class of all
intersections of 1 sets of the form B(s,,ey,). Since each

Ag(P) 1is countable, A(P) 1is countable.

14




Proof of Theorem 3.11. Since A(P) 1is countable, it follows that

{w: My(e,w) => x(+)} 1is G-measurable, by Lemma 3.12.

Furtherﬁore, this set has probability 1, since

Lo

Plw: Hn(G,w) + x(G) for all Ge¢ A(R)} =1 ,

using Theorem 3.1 and Proposition 3.9. 1|

(3.13) COROLLARY. Let E be a separable metric space, and let BC

be the class of E continuous functions. Then,

a :
Plw: ] £(X (w))/n »+ xf, for all £ ebC} =1 . .
k=0

Thus, for weakly regenerative processes, one can obtain
simultaneous convergence in (3.]1) over a large class of functions,
namely bC (this simultaneous convergence can not be extended to bE,
except when x is atomic).

In addition to strong laws such as (3.1), weakly regenerative
processes also have behavior characteristic of the so—-called "renewal

paradox.”

(3.14) PROPOSITION. Suppose either that £ ¢ Et¥ or n-clthfl) < e,
Then,




(3.15) ) 4 (£)/n » Bt Y (£)/Ex 8.8.
tZo (k) 171 1 I

Proof. Tor f ¢ Ef, observe that

To(m)~} 2(n)-1 T}
Lo T Ty = L jZTk Y3(9) ¢/ Tycn)
2(n)-1
- kZO ‘k’k(f)/r,,(n) -DB‘tlYl(f)/E‘tl .

a.s. (to deal with the m-dependence, average as in the proof of
Theorem 3.1). Now, repeat the reasoning of (3.5) through (3.6) to

complete the proof. 1

In particular, the “"time-averaged™ length of the epoch

2
Tx(n)+1 Tz(n) is 511/311, a8 in the regenerative case.

4, Stationary Regenerative Processes

Assoclated with every weakly regenerative process is a closely
related stationary process; see BROWN and ROSS (1972) for a discussion
F in the regenerative case., We start by proving a strong law for

functionals of the form g(xn, ceey X$+z), where g 1is a real-valued

16




E}+l measurable function. In preparation for stating the result, we

extend ic_notation Yo(f) from scalar functions £ to functions
g of a vector argument:

Tn+1-1

Y(g) = 8(X, , eee, ).
n kgrn xk xk+1

(4.1) PROPOSITION. Suppose either that g ¢ (EX*l)* or

nl('gl) e, Then,

1n .
(4.2) g(X. , «oo, )/n » EY (g)/E< a.s.
kzo X Terr 1 1

Proof. Let U = (xk, cees xk+x), and recall that xk is weakly
regenerative of order m, with respect to some sequence of random
times Tj. It is easily verified that Uy 1s then weakly regen-
erative, of order mtg, with regpect to the same times 15. The
limit theorem (4.2) is then obtained as an immediate consequence of

Theorem 3.1.

‘ The following result shows that weakly regenerative processes

F have a "shift invariance” property.

(4.3) PROPOSITION. Suppose either that g ¢ (EXt1)+ or

nl(lgp < . Then,

17
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Tz-l Ii*j-l

(‘.‘) ‘{ k-zl’rl ‘(xk’ eeey xm)} - '{ k‘glﬂ ‘(xk’ e xhl)}
for any j>o.

Proof. Since Uy 18 weakly regenerative (see proof of (4.1)), we

have that

Tn+l-l+j

(4.5) g(X,, se., Y/n + EY (g) 2.8,
. 'ng X Lot 1

1f g ¢ bE*l, Now, the left-hand side of (4.5) is dominated: by

lgl(Tn+1-Tl)/n, which converges to lglErl. But

B(T

n+1-T1)/n = Et

1

and hence {(Tp4)-T})/n; n > 1} is uniformly integrable. It
3 follows that the left-hand side of (4.5) is uniformly integrable, and

thus we may take expectations of both sides in (4.5) (see CHUNG

(1974), p. 97). Application of (2.5)(11i) then proves (4.4) for
g e b(E}*‘). A standard approximation argument gives (4.4) in the

general case. |

We now define the associated stationary process TY,. PFor

A ¢ E®, define the measure P* on E® by the formula

18




Ih-l

* -
A =E[ T 10X, X, o)} /BT, .
k-‘l.'l
Let Y, be the coordinate projection of E® onto its n'th

coordinate, for =n > 0.

(4.6) THEOREM. The process (Y,: n?_ 0} 1s stationary with

respect to the probability P%,

Proof. It is sufficient to prove that

141

P{(Yo, cees Yl) ¢ A} = P{(Y,, ..., ) ¢ A) ‘ for all A c¢ E",

Yj"'!

But this result follows immediately from Proposition 4.3. 1

In this case where {X;: n > 0} 1s regenerative, it is
particularly simple to prove that the stationary process {Y,} can
be constructed directly from the {X,} process, in the following
sense. We assume that (Q,G,P) is a sufficiently rich probability
space that it supports r.v.'s Bl’ ﬂz independent of ((xn,rk):

o,k > 0} with distribution

P{B, = k, B, = 3} = P(z, = k}/x:1 I{isk}(j) .

Let n(k)-inf{nzlztn-k} and put =T + B

n(B1) 2°

19




(4.7) PROPOSITION. If {X,: n > 0} is regenerative, then the
process {Xy4x: k > 0} has the ssme distribution on E® as
{Y%: k> 0}.

Proof. For B ¢ Eitl,

(4.8) P{(xa, esey xﬂl) € B}

o k-1
: | "l o PTaougr tn Fagoage) © B Plny = KMET

Now,

(4.9) P{(X ) ¢ B}

a(k)+§’ °°" n(k)+1+1

Z P{(X.rﬂ. ases xr+j+x) ¢ B;

1:1 # Kk, coe, 1n-l #k, ¢ =k}

n

] P{(X

n=]1

) € B; t =k} Plr, # K®!

Tlﬂ' ey le‘l'j'i'!. 1

= P{(X ) ¢ B; Ty - k}/P{r1 =k} ,

T+ x’l‘l+j+!.

where the second equality follows from (2.1)(1) and (2.5)(i1).

Substituting (4.9) into (4.8) and using Fubiil proves that

20




P{(Xa, eoey xﬁl) € B}
N p
- P{( s cees ) ¢ B; ©, = k}/Ex
n{ . 520 %z +4 g R 1 1
= P{( s sesy ) ¢ B; = k}/Ex
jzo k_§ 1 x’rlﬂ x’rl+j+1 €% 1

- P{( 9 seey ) €B; <, > j}/Ex
320 *r + g R 1 1

=E{] ) e B}/ET,

x,r "'j p ooy, XT ﬂ+l
1 1
proving the result. |

As one might eipect, the process (X ek k > 0} 1is regenerative
' 9 ! -
with respect to the random times To a, T.‘ Tﬂ(ﬂl)""" k2> 1.

Furthermore, as is easily checked,

(4.10) P{(x,r,l, cees xr.l*) € B; Ty = Jgs e Tay = 3y}

- P((x-rl! seey %1*) e B; Tl - jo' sesy T”l - j‘.)

L L ] .
where Ta 'rnﬂ 'rn. However, the first epoch of (xm. n > 0} has

a markedly different distribution from that of (X,: n > 0}.

Observe that for B ¢ ELtl, we have

21




o s

(4.11) p{(x.r,, cses x’bﬂ) € Bty = 21}
0

- E P{(Xﬂ

» .-o,x -
k=341 (k)+k~2-1 n(k)+k-1

= 1 P{(x’rlﬂc-x*l’ e Xy

k=2+1

) ¢ B; v = k}/E7|

+k-1 1

1
- P{(xrz-z-l' cees X.rz_l) ¢ B; 1, 2 #1}/Er .

This result will prove useful in Section 6, when we shall examine
mixing conditions for regenerative processes. Formula (4.11) also
leads directly to the observation that a stationary regenerative
process {xn: -2 { n { ®»} has the same distribution as its time

reversal {Z,: -o <n < @} 1f and only if for all B ¢_§£+1,

(4.12) P{(Xp g0 oves Xp ) € By 7 > 241}
1

T1+l

- P{(xrz-z-x' x.rz_l) e B; T, > a1} .

5. Total Variation Convergence for Regenerative Processes

By Theorem 3.1 and the bounded convergence theorem, it follows

that

22

) e B} P{t; = k}/Ez,




n
(501) Ef( )/n + nf
o B

for all f ¢ bE. One of our main goals in this section is to show
that the convergence in (5.1) is uniform over f ¢ bE such that
t1ft < 1, and that, under certain conditions, (5.1) holds without
averaging. Such uniform convergence is equivalent to total variation
convergence of the corresponding measures.

In analogy with Markov chains, we say that a weakly regenerative
process {X,: n > 0} is periodic with period p 1f the span of the
distribution of <t} 1is p. If the period is 1, then {X,} 1s

said to be aperiodic. For g ¢ b(E®), put

v(g;n) = Bg(v'l'l-i-n) for n>0 .

(5.2) THEOREM. Let {X;} be an aperiodic positive recurrent
regenerative process. Then, there exist constants y, + 0 such

that

sup |v(g;n) - E*g(Y)| = v,
igt <1

where E* denotes expectation with respect to P*, If !1: < », then

e " o(nl-‘).

Proof. We start with a renewal argument, namely

23




n
kzl E{g(VT1+n); T, = T +k} + E{g(le+n); T, > T +n} . J

(5.3) v(g;n)

n
kgl z{g(vT1+n_k)} P{r, = k} + E{g(VT1+n); IR n}

n
7 v(g; nk) P{z, = ok} + a(g;n) ,
k=]

when the second equality is by Proposition 2.9 (1). The solution of

this renewal equation is

n
(5.4) v(g;n) = | a(g; o-j) uy
=0

where u, = I P{r) *+ ees + 7 =]} (see KARLIN and TAYLOR (1975),

p. 184). The renewal theorem (FELLER (1950), p. 330) asserts that

(5.5) v(g;n) » J a(g;3)/Ex; .
j=0

Note that a(|g|; j) < tgt P{t; > j}, so, by Fubini's theorenm,

(5.6) a(g;j) = E gV, )1 ]
jzo {Jzo T+ {73}

T2-1

=Ef J g(vj)} = E* g(7) By .
j=T

Combining (5.4) through (5.6) shows that
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(5.7) |v(g;n) - E*g(Y)l

. . .
~1
< 1gl P{t, > j}ju__, ~ (Ev) + 1gl P{t, > 3} .
jzo ! a3 | j-g+1 19

We now use an estimate of GEL'FOND (1964) for the error in the renewal

theorem, namely

(5.8) u_ = 1/Ev + o™y

which is valid under the assumption Et: < @, This implies that

K_ = sup{ uy = 1/Et|: § > x} = o(xl_K) . ‘
Substituting this relation in (5.7) yields

vig;n) = E*g(Y)|

tgi( P{t, > 3} + K _,.)
ng/z 1 /2

[Za

A

1g1(al™ 7 g1 P{r; > J} + K,

)
>n/2 2

Igl(nl_x o(l) + o(nl-K)) = jgl o(nl-K) .

the second-last equality because ET? { o, 1
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Theorem 5.2 considers the time-dependent behavior of X, for

n > Tj. Our next result deals with X, over semi-infinite time

iatervals with deterministic time originm.

(5.9) PROPOSITION. If {X,;: n > 0} is an aperiodic positive

recurrent regenerative process, then

|ECa(¥y ) |EG) - E*a(D)|
<181 + (0 B(Ty ., - kO n/z|g“;} + 1g1 ¥0/2) a.s.,

where y(x) = sup{y(j): § 2z} for x>0 (put ¥(x) =0 for

x < 0).

Proof. Let ; = g - E*g(Y), and note that
- k
|EC 8V ) |Eo} |
< |E(g(V,, ): T < kha|FSY| + 1gt B(T -k > alF)
2 l 8 Vit Ta(x)+1 2 l-o | g 2(K)+1 R’ -

For the first term, we use Proposition 2.9(i1) and Theorem 5.2 to

obtain




- k
E(v(g; 0 +k = Typya1)i Tyeeye < B

k
SIBLE(Y( + Kk = Ty )5 Typyyy ~ k< n|Ey}

<8N E(y(n + k- Ty 05 Ty, - kS n/z|g§)
+ g1 (0) B(T, (. - k> /2|gh)

k
< 181 (v(0/2) + y(0) P(Ty 1y, — kD n/ZI_FO})
proving the proposition. 1

It should be noted that the asymptotir nature of vy, under

E‘t'; < ®» is inherited by y(x), namely vy(x) = O(xl-").

(5.10) COROLLARY. (1) If (X,} 1is an aperiodic positive
recurrent regenerative process, there exist constants a, + 0 such

that

(5.11) sup Eg(V.) - E*g(Y)| = a_ .
1g1 < 1 [ee%, n

The constants a are dominated by (14(0))P(T, > 0/2} + y(a/2).
(11) I1f (E,E) 1is a separable metric space, the process

(Xps Xp41s ) converges weakly to the stationary process Y i{n
the product topology on E®.
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Proof. Part (i) follows immediately from Propogition 5.9. For part
(ii), 1t 1is necessary only to realize that for a separable metric
space E, the product field E® coincides with the Borel sets under

the prod:iict topology (see DELLACHERIE and MEYER (1978), p. 9). ]

The periodic case can be reduced to the aperiodic situation

above, without difficulty. If {X,: n > 0} 4is a periodic positive

recurrent regenerative process with period p, set U, = (Xo, ey

0
Xp ;) and put
1

h Uy = (x’l’1+(i-1)p’ Tety le+ip-1) ‘

The process {Uj: i > 0} 1s regemerative with respect to the random
' - t - [ 1] o Pt '
times Ty = 0, T} =1, Ty = T} + %,/p, oo, Tp =T, + 7 _,/p.

Q Clearly, the distribution of ti - ti/p has span 1, and hence {Ui}
1s aperiodic. We therefore immediately obtain the following

genera’ization of Proposition 5.9.

(5.12) PROPOSITION. If ({X,: n > 0} 1is a positive recurrent

regenerative process, then there exist constants b, + 0 such that

n
k
s E{g(Vi ) |Fn)/n - E*g(Y)] = b_ .
|g|“§1|3z-o (8CTeyy) [Eol/m = Pa(D] =3,
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These results have immediate applications to general state space
uarkov.chains (see p. 8-25 of REVUZ (1975) for definition, notation,
and basic properties). A Markov chain (W: n 2 0}, with transition
kernel Q defined on measurable space (E,E), is called Harris
recurrent if there exists a set A ¢ E, an integer k, and a

probability ¢ on (E,E) for which

(1) Qx{wn e A 1.0,} =1 for all x
(5.13)

(11) Qk(x,-).z () for all x ¢ A, where A is positive.
In the case where k = 1, ATHREYA and NEY (1978) and NUMMELIN (1978)
have shown that for each p on (E,E) the process (W,} can be ,
embedded, with marginal distribution Q> in a probability space
(th,au) for which {Hn) is regenerative. Furthermore, the
regenerative process {W,} 1is positive recurrent if and only 1f Q

t has a unique invariant probability =, in which case = coincides
with that given by (3.18). The basic idea behind the regenerative

embedding 1s to "split™ Q as

(5.14) Q(x,*) = A¢(<) + (1-A) R(x,*)

over x ¢ A. A transition out of A 1is distributed with probability
A as ¢(e) (a regeneration) and with probability 1-A as R(x,+).
Proposition 5.9 provides an easy proof of the following result

(see ATHREYA and NEY (1978)).
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(5.15) PROPOSITION. If (W,)} is a Harris chain with invariant
probability x, and if k=1 im (5.13), then

sup |xp gv ) -:gl +0 for all .
igl 1

The general convergence results for Harris chains can be obtained from
(5.15) in a reasonably straightforward way; see ATHREYA and NEY
(1977).

6. Mixing Conditions for Regenerative Processes

We say that a process {X;} is strong mixing if

(6.1) sup sup |p(u) - P(A) P(B)| = a(n) +0 .

k Ae¢ EO

a
BeFin

The process (X,} 1s uniformly strong mixing (or ¢-mixing) if

(6.2) sup sup . |P(AB) - B(A) P(B)| < ¢(n) P(A) ,
k Ac EO

(]
' BeFin

where ¢(n) + 0.
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(6.3) THEOREM. (1) If (X,)} is an speriodic positive recurreat
regenerative process, thea (IX,) is strong mixing.

(11) If, in addition to the above hypotheses, there axists
c(x) + 0 such that

sup T -k>n !k) £ e(n) l.-l.,
k 1(k)+1 =0
then the process ({X;} is uniformly strong mixing.

Proof. For (i), let W be a nonnegative bounded _l:: measurable

r.v., and take g ¢ bE®. Then, by Proposition 5.9, :

(6.4) EMg(V,, ) = E(WE(g(V,, )|Ft}}

< 1w gl ((14+(0)) P{Tz(k)ﬂ-k > n/2} + y(n/2)) .

Of course,
(6.5) |EWE (V) ) - EVES(V, )|
£ |Ew§(vkﬂ)[ + zwlzg(vm) - E*g(Y)
< |Bw§(vk+n)| + 190 Igla .
k)
b e




the second inequality by (S.11). Using (6.4) and (6.5), it is clear
that the proof of (6.3)(1i) is therefore complete, provided that we can

show that
uniformly in k. Now, observe that

2(k)+1

S.P{to > kin) + P{Tz -k >n; (k) >0y .

(k)+1

The second term can be written as

k

(6.7) jzl P{Tz(k)+l ~k>n; T, =3}

k

= 7 KT
i=1
k

= 7 KT
i=1

21y b= 41 T (D) 2w T = 3}

<  max P{T

- (T,+) >n} .

The final term in (6.7) is amenable to a renewal argument, which shows

that

P"J.(rlﬂ) - (T, 4) >n) = k-i-o P{z, > w#i-k} u




vhere the right-hand side of (6.8) converges to ], ., P{r, > ktn}/Bt, .
The boundedness of P{(t] > n+i-k} allows us to uo: an argumsent
similar to that of Theorem 5.2, to prove that (6.8) converges to 0
as u + o, uniformly in j, completing part (i).

Por (11), write

(6.9) [Evg (v, ) - EvER(V, )|
< |z(wz{§(vk+n) |g:})| + xwlzg(vm) ~ E*g(Y)

< 18t EW((14v(0)) e(n/2) + v(n/2) +a) . |

We now examine the form of the strong mixing constants a(n) for

the stationary regeﬁerative process {Yn: n > 0}.

(6.10) PROPOSITION. If (X;} 1is an aperiodic positive recurrent
regenerative process with B‘t: e, then {Y,} 1is strong wixing

with constaants a(n) = o(nl"‘).

Proof. Let Vk = (Yk, Yk+l’ «es) and observe that Eg(Vk) = Eg(vo)

= E*g(Y), by stationarity. Thus,

EWg(V, ) - EWER(V,,.)

< 1w agk (1+(0)) P{Tl(k)+l -k > n/2} + y(n/2)




— - e —
. B

(sse (6.4), (6.5), and (4.10)). We now use (6.6) to bound

P(Ti(k)+‘ - k > n/2}, noting that

P(<} > k) < Jzn P(x, > 3}/Bt) < ' ¥ jzn 3 etey > g)Ee

= o(nl-‘)

For the second term in (6.6), we recall that wu, = 1/Et + o(nl=x)
and apply the argument of Theorem 5.2 to (6.8); the resulting rate of

' convergence bounds the second term through (6.7). ] ]

As {n Section 5, Markov chains provide an interesting class of

examples.

(6.11) PROPOSITION. Set {H;: n > 0} be a Harris chain, possessing
an invarisnt probability =x, which is aperiodic as a Markov chainm.

Then, {W,} is strong mixing for arbitrary imitial distribution .

Proof. Let A and k be as in (5.13). Because {(Wy: n > 0} is
an aperiodic Markov chain, it follows that W,y visits A
infintely often Qu' a.s. (see lLemma 2.1 of [27]), and hence {wnk}
is regenerative under a measure au congistent with QP' Asgsunming
that the regenerative process {W,x} has period p, let X, =
{Wag; n > 0) where s = pk. The skeleton X, 1is a positive

recurrent regenerative process, since W,g is a Barris chain with
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iavariant probability, and therefore, by Theorem 6.3(1), strong mix-
ing. Let m = as+j, n = be+2, vhere 0< j, £ <s and a<Db and

consider

(6.12) Qu(BC) - Q“(B) Q“(c)

where B c_g(wo, cees H;) and C e‘gﬁwn. Wi+1, eee)e Using the
Markov property of W,, it is easily seen that these two sub-o-
fields are conditionally independent given -E‘w(a+1)s’ wbs) (see

Theorem 45, p. 36, of [12]) and hence

Q{BCW(0r1)g> Yne!
-.Qu{niw(l+l)t’ wbs} Qu{c'w(a+l)s' Ve
= Qu{n|w(n+l)s} Qp{c'wbs}

(using the Markov property of reversed chains). Thus, (6.12) can be
written as the covariance between functions of Xu4; and Xp, and
so the strong mixing result for {X,} can be directly applied to
obtain (6.1) for {W,}. Furthermore, it is clear that the mixing
constants for {W,} are given by a(n/s), where a(n) are the

constants for {Xp}. 1

Proposition 6.11 gives a regenerative process proof of Theorem 1

of DAVYDOV (1973). Furthermore, our approach allows us to obtain
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estimates for the atrong mixing constants for stationary aperiodic
Barris chains. 1In particular, by applying Proposition 6.9 and 6.10,

we gsee that a(n) = o(nl.‘).

provided Et‘; < », where 7 is a r.v.

with the distribution of the Athreya-Ney-Nummelin regeneration time.
It is also worth applying our regenerative results to Doeblin

recurrent Markov chains. A chain (W} is said to be Doeblin if

there exists ¢ > 0 and a finite nontrivial measure v such that

v(B) { € ==> Qk(x,B) L1~ ,

for some k (see DOOB (1953) for a complete discussion). If E 1s a
separable o-field (i.e., countably generated) and if {W,} has a
single ergodic set (see p. 209 of [14] for definitions), then (W}

is Harris recurrent (see Lemma 4.6 of [18]).

(6.13) PROPOSITION. Let {W,} be an aperiodic Doeblin chain with
single ergodic set, and assume that E 1is separable. Then, (W,}
is uniformly strong mixing with uniform mixing constaats ¢(n) =

o(n"k), for any k> 1.

Proof. We apply Lemma 4.7 of [18], which shows that there exists m

such that
sup Q{T, >m <1 ,
xe B
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where A 1is as in (5.13). Then, using the argument of Theorem 4.1 of

(1} ohoyl that

(6.14) sup Ex{TL(k)+l ~k>n) = O(pn)

xe¢ E
when 0.< p <1 and the Ty's are the regeneration times of Wpg
(see proof of (6.10)). The proof of uniform strong mixing is
completed by using (6.14) in conjunction with the Markov property and
Theorem 6.3(1i). To obtain the estimates for ¢(n), one applies

(6.14) to (5.2), (5.11), and (6.9). 1

The above result can also be found in {11] (Theorem 2), proved by

a different method.

7. The Central Limit Theorem for Weakly Regenerative Processes

Let {X5: n > 0} be a positive recurrent weakly regenerative
process, and let f be a real-valued E-measurable function. We now
wish to investigate the behavior of "normalized” sums of £(X,)'s.

Assume that nlfl <e (n given by (3.8)), and let

f(xn) - f(xn)-nf.

(7.1) THEOREM. Let (X,} be a positive recurrent weakly

regenerative process, and suppose that 0 < cz(!l(lf|)) < ®. Then,
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L. PN
(7.2) I tapm? = o, oH

k=0

where

~ . -~ -
o Ex) = X, (E)) + 2 kzl cow(¥, (£, T, () .

Proof. Om {T; < n}, we can write

7. ] tapnt/teybhnt?e ] 1 (/a2 + & (B!
k=0 k=1 L
where
- L 1/2
R (f) = £(X,)/n
n k-Tz(n) %
2
The term Rn(g) can be bounded as follows:
-~ ~ 1/2
(7.8) |Ry(D)] < max{¥, (|£]): 0 < k < n(wtl)}/n
- max max{Y(m_H)kﬂ(ﬁl): 0<k< ﬂ“l}/nllz .

0<3<ml

Since {anf‘)} is mdnpendent, it follows tht (Y(uri-l)kﬂ('fl)’

k > 0} {is an i.1.d. sequence of r.v.'s with common finite variance.
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Thus, by the Borel-Cantelli lemma,

- 1/2
Y(m+1)kﬁj(‘f‘)/k +0 a.8.

Hence, for each & > 0, there exists n(g) such that for all

k 2 n(S)’

Y carnyag EP < e

So, for k > n(e)

- 1/2
lim  max k1r1(m_1)_,,j(|f|)/k

Tie Sy 172
£ lim  max Y /%
1 < n(e) 1(mt+l)+] l |

—

Tam : 1/2
P o 5T P

<e,

and thus 'Rn(f)l + 0 a.s. We now use a technique employed by CHUNG

(1967) to deal with the second term in (7.3). Let

b(k) = max{j: j(mtl) Ez, < k)
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and put k' = b((l-ez)n), k* = b(n), k" = b((l+ez)n) for ¢ > 0.
Since 2(n)/n + 1/Etx; a.s. (this can be proved by averaging as in

(3.3)), it must be that there exists n(e) such that

A= {k'(z+l) < 2(n)-1 < k"(m+1) for all n > n(e)}

has probability at least 1l-¢. On A,

wa)-1 . ke(mel)
I Y, (£) - 1 Yj<f)|
=1 =1
m a
£2 e M Ipzk'Yp(“’”)“(f) )

The Kolmogorov inequality applies to each individual "max™ term, and

thus it follows that

/2

" l H
KY€k |p-k-YP(“'“)+i(f) e o
in probability. Hence,
2(n)~1 " k*(mt+l) - 1/2
( I Yj(f) - 1 Yj(f))/k* +0
i=1

i=1
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in probability. Applying the central limit theorem for m—dependent

sequences (see [3], p. 174) shows that

ke(mbl)
I xhat’? = o, o er@r) .
i=1

The proof is finished by using the “converging together” lemma (see

P. 25 of [3]) and observing that

k*/n » 1/(mtl) Bx, . 1

It is worth pointing out that in the regenefative case, Chung'f
proof (see p. 100 of [6]) shows that the cemntral limit theorem (CLT)
holds under the slightly weaker assumption that 0 < az(YI(E)) { =,
Theorem 7.1 also le;ds tc a new CLT for Harris chains, in light of the
fact that Harris chains are weakly regenerative (see [19], Proposition
4.115. For other versions of the Harris chain CLT, see OREY (1959),
COGBURN (1970), and MAIGRET (1978).

As 1s well known in stationary process theory, the variance
constant o2 for partial sums of the form (7.2), coming from a

stationary process {Yji}, is generally given by

(7.5) AR +2 | eovli(yy), £ .
k=1
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Let {Yg4} be a stationary positive recurrent regenerative process,

and observe that, under certain moment conditions, Theorem 7.1
applies. This leads one to suspect that (7.5) is ¢qual to
az(YI(E))lztl. Indeed, this kind of result is frequently implicitly
used in constructing consistent variance estimates for stationary
processes as they arige, for example, in simulation; see FISHMAN

(1978), p. 262.

(7.6) PROPOSITION. Suppose that {X;} is a positive recurrent
speriodic regenerative process with 0 < cz(Yl(lfl)) < e,
E"f(x)lz".6 < @, Then, if the series (7.5) converges absolutely to a

positive constant,

-~ . - a - 2 ~ '
a.n o (E(Ty)) + 2 I con®p), Ev) = Sry /ey,

Proof. By Proposition 6.10, the process {Y,} is strong mixing
with mixing constants a(n) = o(n~2), Then, since

(1+8)/(2+68) > 1/2, it follows that

E a(n)(1+6)/(2+6) < o
n=1

Furthermore, since the left side of (7.7), call it c%, converges

absolutely,
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2, % = 2 2
G £ )/ +a7>0
(kzo %) 1

(see (3], p. 172), and thus Corollary 5.3 of HALL and HEYDE (1980)

applies, yielding the CLT

L 1/2 2
kzo f(Yk)/n => N(O, al) .

On the other hand, as discussed above,

L 1/2 2
kzo f(Yk)/n ==> N(O, 62)

where ag - az(Yl(f))/Etl, proving the result. |

A corresponding theorem for the periodic case can be obtained by
considering the process {Uy} (see remarks following Corollary
5.10). Note that all countable state positive recurrent Markov chains
are positive recurrent regenerative processes. Proposition 7.6, in

such a context, ylelds a result complementary to Theorem 3, p. 102, of

CHUNG (1967).
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8. A Splitting Property of a Certain Class of Regeneration Times

A random time T is said to be a splitting time for the process

{Xg: n > 0} if for each n > 1,

(8.1) {T=n) = Cn fn Dn a.8.

n )
where Cn c 20, Dn c Zn (see JACOBSEN (1974) for details). Our main

goal in this section is to show that for a reasonably general class of
Markov chains, a strong regeneration time must necessarily be a
splitting time. This, in turnm, will allow us to totally characterize é
the nature of the strongly regenerative chains in the class. %
We start by assuming that {X,} 1s a Markov chain taking
values in a meagurable space (E,E), where E 1is the class of Borel
sets of the complete, separable metric space E. We shall further
require that the transition kernel Q of the process ({X,} is
A~-continuous in the sense that Q(x,+) 1is absolutely continuocus with
respect to some fixed o-finite reference measure A(+), for each x

in E. Hence, by Proposition 5.1 of [29], one may write Q as

ax,8) = [ q(x,y) A(dy)
B

where q 1is jointly measurable in the product o~field E x E.

As {8 well-known in Markov chain theory, the process {X,)} wmay
be represented as the measurable coordinate projections on the product

space Q = E x E x eee , Then, for each p on (E,E), the chain
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X, induces a probability Qu on Q corresponding to the chain ;
started'with initial distribution p. Putting Eg.l, E; equal to the '
oc-fields generated by the first n coordinates and the remaining
coordinates, respectively, we let Q;(dx), Qi(dy) be the "marginal”

measures defined by

1 n-1
(8.2) Qu(A) - Qp{(xo' cees X 1) € A}, A cE,
2 -
Qu(A) = Q“{ (xn 9 o600, xn_l) € B) ' B € En

Qur first result is the following. \

(8.3) PROPOSITION. If {X,: un > 0} is A-continuous, then there

exists a jointly measurable function £(x,y) such that

Q,(4x, &) = £x,7) Q'll(dx) oi(dy) .

Proof. Let Qz(dy) be the probability on Q associated with

X0 = z. Then, the Markov property of {X,} allows one to write

1
Qu(dx. dy) £ A(dz) Qp(dx) alx,z) Q (dy) .

Thus, for a rectangle A x B (A ¢ 58-1, B¢ E:), we have, by Fubini,
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Q (A xB) = Aa(dz) Q(B) J Ql(dx) q(x,2)
» E I A

1
= [ M) 9,(8) [ Q) atx,2) Tryguys)

h(z) = | Ql(dx) o(x,z) .
-1 P
0

Hence, for any rectangle A x B,

(8.4) Qu(A x B) = %(A x B) ,

where Q: is defined by

1 (x,z) ,
(8.5) Qh(dx, dy) = £ Mdz) Q,(dy) Q(ax) SR B(w) Tyoysny -

This measure iy clearly absolutely continuous with respect to
1 1 2
(8.6) [ A(dz) Q,(dy)q (dx) h(z) = Q (dx) Q (dy)
E . v B B
Since the rectangles generate the product o-field on Q, it

follows, by (8.4), that Qu - Q:. Thus, the Radon-Nikodym theorem,

applied to (8.5) and (8.6), concludes the proof. 1
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(8.7) THEOREM. Let Ty be a regeneration time for a A-~contiouous

Markov Fhain. Then, Q, a.s.,

Yo, (7, > O

I eI
1 -
(q,(z,=a|rg '} > 0} {, (7,=a|Ey} > 0}

ri‘“‘-_n_(xj, ces Xy -

Proof. Let P* be the probability om (E¥,E) defined by

(8.8) P*(A) = Q“{V0 cA T " n}/Qu{'rk = n}
where V, = (X, Ky, o0e)e Note that if A ¢ 53'1, B ¢ E., then

(8.9) QB{T = n} ¢ P*(AB) = Qu{(xo, eoasy xn_l) c A, Vn € B; Ik = n}

- Qu{(xo, e X ) e b T, = n} Qp.{v'tl ¢ B}

by the regenerative property. But




T € B T =) = Q€ B) QT = n)

and thus (8.8) becomes

(8.10) PA(AB) = P*(A) P*(B) . |

Let Pi', P’z' be the marginal measures of P* on 58-1, _E_:

respectively, and observe that (8.10) implies that P* equals the

product measure Pfl' x P; on an algebra generating E . Thus, ) ’

h} (8.11) p*(c) = [ {f Ic(x,y) Pi'(dx)] P;(dy) .

Now, P’l‘ < Pl and P%* € P, where P., P, are the marginal measures

2 2 1’ 72
of P on EB (Q1 < Q2 means that Q1 is absolutely continuous with

respect to Q). Hence, by the Radon-Nikodym theorem,

P4(dx) = h (x) P, (dx)

PA(dx) = hy(x) P,(dx)

for appropriately measurable h; and hy. So, from (8.11), we get

(8.12) P*(C) = [ If I .(x,y) h(x) h,(y) P,(dy)] P (dx) .

Proposition (8.2) then shows that
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(8.13) P'(dx, dy) = f(x,y) Pl(dx) Pz(dy) .

We now use the fact that P* < P', so that

(8.14) pP*(dx,dy) = h(x,y) P'(dx, dy) .
Combining (8.12) through (8.14) proves that
h(x,y) f(x,y) = hl(x) hz(y)

P1 x Pz a.s. The absolute continuity of P with respect to Pl x Pz

gives

(8.15) h(x,y) = "1(“) hz(y)/f(x.Y)

P a.s. (we interpret the quotient as zero if the denominator

vanishes). Now observe that

h((Xyy <oy X 1), V) = B(T, = n'go} a.s.
n~1

By (Xgs eeey X)) = BT, = “|§o } a.s.

By (V) - B(T, = n|g;} a.s. .

Thus, (8.15) proves the theorem. 1




Equation (8.16) can be used to characterize the class of strongly

regenerative A-continuous Markov chains.
(8.17) THEOREM. Let {X;} be a A~continuous Markov chainm, with
transition kernel Q, taking values in a complete separable metric

space. Then, the following are equivalent:

1) {X,)} 1s a strongly regenerative process under initial

distribution .

11) there exist sets A,B ¢ E such that Q“{(x n—l’xn) e.A x B

100-} =] and
«x, B n C) = ¢(C) x,B)
for all xe:AandceE,vhe'te ¢ 1is a measure on (E,E).

Proof. We first prove that (i) implies (ii). Select a 8o that

Qp{'rz =n} > 0, let g ¢ bE, and consider

(8.18) E“{Zg(xa); T, = n}
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where Z 1is an arbitrary bounded function measurable with respect to

n-1

So -‘g;xo, cees xh_l). By the Markov property and (8.16), (8.18)

can be written as

(8.19) E“{Zg(xn) IPl IPZ}

n-1
zu{z II.1 g(xn) zp{rz Sy 1}

B2 I 8(K) nxy)

B (2 I E,(8X) WE)|x )

Bp{z Irl(Qgh) (x _)} *

x where h(xn) = P(Pz Xn}, and Qf 1s defined, for f ¢ bE, by the

formula

(Qf)(y) = [ £(z) Qy,dz) .

On the other hand, the regenerative property dictates that (8.18) is

equal to




(8.20) B (Z T, = 0} Ebg(xTz)
= E(Z II,1 h(X ) Eus(xTz)}
=Ef2Z Irl(Qh)(xn-l) E“s(XTZ)} .
It follows that on I'j, and hence on {T = n},

(8.21) (Qgh)(XTz_l) - (Qh)(xTz_l) Eps(xTz)

Q. a.s., for g ¢ bE. Now, E 1s separable, so it is generated by
a countable algebra C,, Cz, .ees. By (8.21), QN(A) - Qu{TZ = n},

where

A= {(Qgh)(xTz-l).- (Qh)(XTz_l) Eug(XTz) for g = Ick for all Kk} ,

and thus for v a.e. X

(8.22) (Qgh)(x) = (Qh)(x) Eug(xTz)
simultaneouly over all g ¢ bE, where v(dx) = Qu{x,rz_1 ¢ dx; Tz = n},

Let B = {y: h(y) > 0}, and observe that if g(y) = Ig(y) g(y), then
(8.22) gives

(8.23) (Q@)(x) = (@) B, gy H/nCEy )

lLetting n(dy) = Pu{xrz ¢ dy}, we see that (8.23) yields
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(8.24} QUx,dy) = <, n(dy)/n(y) for ye¢B,

where cy 1s a constant. Let ¢(dy) = cen(dy)/h(y), where ¢ 1s a

normalization which makes ¢ a probability. By (8.24), we have

(8.25) Qx, €0 B) = e 6(C)

where e, ™ cx/c. Putting C equal to B reveals that c = ®«x,B).

Finally, recall that, by absolute continuity,
v(dx) = k(x) {X, _, € dx} .
G-t

Putting A = {x: k(x) > 0}, we see that .

Q {(X,. _,» ) e AxB}Y>0
B x'1'2 1 xTZ

and thus
ou{(xn_l, Xn) ¢ AxB 1.0.} =1 ,

finishing the proof of (1) implying (ii).

For the converse, let Tp = 0 and put

T,y = inf(k > T #l: (X, %) € A x B)

For 2, ¢ ka-l

1 Gy, » B¢ hE?- the Markov property proves that
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(8.26)  E({z, g(V\); T) =K}

Ep{zl g8V ) X _, €A X ¢ B}

Eu{zl Exk_l{s(vl); X e B}; X € A}

E(Z) Py (X cB}; %) <A} E {g(Vy))

X1

E (25 T) = k) E{s(Vp)} .

Put 2Z) = 1 in (8.26) and sum over all k in (8.26); this shows
that E@{g(vo)} = Eu(g(le)}' and yields the independence of EO and
V:-l Ek' An inductive argument proves that the entire collection Ek
is independent. For the identically distributed property (2.1)(i1),

repetition of (8.22) for T, proves that for all n > 1,
E¢{g(v0)} - Eu{g(an)} .
In particular, setting
glv) = Ic(vo, ooy vk-l) IA(vk-l) IB(vk)
shows that

Eu{(xrn’ AL xTn+k-l) € G Ty =k

have a common value, proving (2.1)(i1). 1

heiensiinh it B

-




This theox:-: shows that if a )\-continuous Markov chain is
atrongly regenerative, then one can choose the regeneration times to
be stopping times with respect to the process fields. This result
extends, in a certain sense, to Markov chains that are weakly

regeners-ive; see [19]. Por gsome related results on splitting times

for countable state Markov chains, we refer the reader to JACOBSEN and

PITMAN (1977).

" —
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